
IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5702 5

An Efficient and Secure Protocol for Ensuring

Data Storage Security in Cloud Computing

Using ECC

Santosh Kumar Singh
1
, Dr. P.K. Manjhi

2
, Dr. R.K. Tiwari

3

Research Scholar, Department of Computer Applications, Vinoba Bhave University, Hazaribag, India
 1

Assistant Professor, University Department of Mathematics, Vinoba Bhave University, Hazaribag, India
 2

Professor, H.O.D CSE, R.V.S College of Engg & Tech., Jamshedpur, India
 3

Abstract: Computing applications and data are growing so rapidly that increasingly larger servers and data centre are

needed for fast processing within the required time. A fundamental shift in the way Information Technology (IT) and

computing services are being delivered and purchased, results in the development of cloud computing. Currently, there

has been an increasing trend in outsourcing data to remote cloud, where the people outsource their data at Cloud

Service Provider(CSP) who offers huge storage space with low cost. Thus users can reduce the maintenance and burden

of local data storage. Meanwhile, once data goes into cloud they lose control of their data, which inevitably brings new

security risks toward integrity and confidentiality. Hence, efficient and effective methods are needed to ensure the data

integrity and confidentiality of outsource data on entrusted cloud servers. However, Cloud computing requires that

organizations trust that a service provider’s platforms are secured and provide a sufficient level of integrity for the

client’s data. In this paper, we propose an efficient and secure protocol to address these issues. Our design is based on

Elliptic Curve Cryptography and Sobol Sequence (random sampling). Our method allows third party auditor (TPA) to

periodically verify the data integrity stored at CSP without retrieving original data. The challenge-response protocol

transmits a small, constant amount of data, which minimizes network communication. Most importantly, our protocol is

confidential: it never reveals the data contents to the malicious parties. The proposed scheme also considers the

dynamic data operations at block level while maintaining the same security assurance. To compare with existing

schemes, our scheme is more secure and efficient.

Keywords: Data storage, Integrity, Confidentiality, Elliptic Curve Cryptography (ECC), Sobol Sequence, Cloud

Computing, TPA, CSP.

I. INTRODUCTION

Several trends are opening up the era of Cloud Computing,

which is an Internet-based development and use of

computer technology. The ever cheaper and more

powerful processors, together with the software as a

service (SaaS) computing architecture, are transforming

data centers into pools of computing service on a huge

scale. The increasing network bandwidth and reliable yet

flexible network connections make it even possible that

users can now subscribe high quality services from data

and software that reside solely on remote data centers.

Moving data into the cloud offers great convenience to

users since they don’t have to care about the complexities

of direct hardware management. The pioneer of Cloud

Computing vendors, Amazon Simple Storage Service (S3)

and Amazon Elastic Compute Cloud (EC2) [1] are both

well known examples. While these internet-based online

services do provide huge amounts of storage space and

customizable computing resources, this computing

platform shift, however, is eliminating the responsibility of

local machines for data maintenance at the same time. As

a result, users are at the mercy of their cloud service

providers for the availability and integrity of their data.

Recent downtime of Amazon’s S3 [2] and Apple ICloud

[3] are well known examples of cloud data storage.

However, once data goes into cloud, the users lose the

control over the data. This lack of control raises new

formidable and challenging issues related to

confidentiality and integrity of data stored in cloud [4].

The confidentiality and integrity of the outsourced data in

clouds are of paramount importance for their functionality.

The reasons are listed as follows [5]:

 The CSP, whose purpose is mainly to make a profit and

maintains a reputation, has intentionally hide data loss an

incident which is rarely accessed by the user’s

 The malicious CSP might delete some of data or is able

to easily obtain all the information and sell it to the biggest

rival of Company.

 An attacker who intercepts and captures the

communications is able to know the user’s sensitive

information as well as some important business secrets.

 Cloud infrastructures are subject to wide range of

internal and external threats.

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5702 6

Remote data integrity checking is a protocol that focuses

on how frequently and efficiently we verify whether cloud

server can faithfully store the user’s data without

retrieving it. In this protocol, the user generates some

metadata. Later, he can challenge the server for integrity

of certain file blocks through challenge-response protocol.

Then the server generates responses that the server still

possesses the data in its original form to corresponding

challenge sent by the verifier who may be original user or

trusted third party entity. Recently, several researchers

have proposed different variations of remote data integrity

checking protocols under different cryptography schemes

[6]. However, all these protocols focus on static data

verification. One of the design principles of cloud storage

is to provide dynamic scalability of data for various

applications. This means, the data stored in cloud are not

only accessed by the users but also frequently updated

through block operations such as modification, insert and

delete operations. Hence, it is crucial to develop more

secure and efficient mechanism to support dynamic audit

services. The protocols to verify dynamic data in cloud are

proposed in [7]. Although the existing schemes aim at

providing integrity verification for different data storage

systems, but problem of confidentiality of data has not

been fully addressed. The protocols [8] have been

proposed to ensure the confidentiality and integrity of

remote data. But, all these schemes are unable to provide

strong security assurance to the users, because these

schemes verifying integrity of outsourced data based on

pseudorandom sequence, which does not cover the whole

data while computing the integrity proof. Therefore,

probabilistic verification schemes based on pseudorandom

sequence does not give guarantee to the users about

security of their data. Syam et al. [9] proposed a

distributed verification protocol using Sobol sequence to

ensure availability and integrity of data, but it is also not

addressed the data confidentiality issue.

How to achieve a secure and efficient design to seamlessly

integrate these two important components for data storage

service remains an open challenging task in Cloud

Computing. In this paper, we propose an efficient and

secure protocol to ensure the confidentiality and integrity

of data storage in cloud computing using Elliptic Curve

Cryptography (ECC) [10, 11, 12] and Sobol Sequence

[13]. The ECC can offer same levels of security with small

keys comparable to RSA and other PKC methods. It is

designed for devices with limited computing power and/or

memory, such as smartcards, mobile devices and PDAs.

An important factor is the key strength, i.e. the difficulty

in breaking the key and retrieving the plain text. In our

design, first the user encrypts data to ensure the

confidentiality, then, compute metadata over encrypted

data. Later, the verifier can use remote data integrity

checking protocol to verify the integrity. The verifier

should able to detect any changes on data stored in cloud.

The security of our scheme relies on the hardness of

specific problems in Elliptic Curve Cryptography.

Compared to existing schemes, our scheme has several

advantages:

 It should detect all data corruption if anybody deletes or

modifies the data in cloud storage, since we are using

Sobol sequence instead of pseudorandom sequence for

challenging the server for the integrity verification.

 Our scheme achieves the confidentiality of data

 It is efficient in terms of computation, storage, because

its key size is low compared to RSA based solutions.

The rest of paper is organized as follows: In Section II we

are introducing the concept of ECC, Sobol sequence and

the necessity to adopt ECC and Sobol sequence to secure

data (Integrity and Confidentiality) at CSP. Sections III

introduce the system model: including cloud storage

model, security threats, design goals, notations and

permutations. In Section IV, we provide the detailed

description of our scheme and We presented proposed

scheme implementation and comparison with existing

schemes in Section V. finally section VI gives the

concluding remark of the whole paper.

II. ECC, SOBOL SEQUENCE

A. Elliptic curve cryptography (ECC)

Fig. 1.Characteristics of ECC

It is an approach to public-key cryptography based on the

algebraic structure of elliptic curves over finite fields.

ECC requires smaller keys compared to non-ECC

cryptography (based on plain Galois fields) to provide

equivalent security. Elliptic curves are applicable for

encryption, digital signatures, pseudo-random generators

and other tasks. Its main characteristics are as shown in

Fig. 1. Stronger encryption, efficient performance, highly

scalable and it is future of cryptography technology. They

are also used in several integer factorization algorithms

that have applications in cryptography, such as Lenstra

elliptic curve factorization. The primary benefit promised

by ECC is a smaller key size, reducing storage and

transmission requirements, as shown in fig. 2, i.e. that an

elliptic curve group could provide the same level of

security afforded by an RSA-based system with a large

modulus and correspondingly larger key: for example, a

256-bit ECC public key should provide comparable

security to a 3072-bit RSA public key.

Fig. 2.Memory used by ECC, RSA

https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Algebraic_structure
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/Finite_field
https://en.wikipedia.org/wiki/Galois_field
https://en.wikipedia.org/wiki/Encryption
https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/CPRNG
https://en.wikipedia.org/wiki/Integer_factorization
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Lenstra_elliptic_curve_factorization
https://en.wikipedia.org/wiki/Lenstra_elliptic_curve_factorization
https://en.wikipedia.org/wiki/Lenstra_elliptic_curve_factorization
https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5702 7

For current cryptographic purposes, an elliptic curve is a

plane curve over a finite field (rather than the real

numbers) as shown in Fig. 3 which consists of the points

satisfying the equation along

with a distinguished point at infinity, denoted ∞.

Fig. 3.Elliptic Curve

This set together with the group operation of elliptic

curves is an Abelian group, with the point at infinity as

identity element. The structure of the group is inherited

from the divisor group of the underlying algebraic variety.

Cryptographic schemes: Several discrete logarithm-based

protocols have been adapted to elliptic curves, replacing

the group with an elliptic curve:

 The elliptic curve Diffie–Hellman (ECDH) key

agreement scheme is based on the Diffie–Hellman

scheme,

 The Elliptic Curve Integrated Encryption Scheme

(ECIES), also known as Elliptic Curve Augmented

Encryption Scheme or simply the Elliptic Curve

Encryption Scheme,

 The Elliptic Curve Digital Signature Algorithm

(ECDSA) is based on the Digital Signature Algorithm,

 The Edwards-curve Digital Signature Algorithm

(EdDSA) is based on Schnorr signature and uses twisted

Edwards curves,

 The ECMQV key agreement scheme is based on

the MQV key agreement scheme,

 The ECQV implicit certificate scheme.

Diffie-Hellman: A cryptographic key exchange method

developed by Whitfield Diffie and Martin Hellman in

1976. Also known as the "Diffie-Hellman-Merkle" method

and "exponential key agreement," it enables parties at both

ends to derive a shared, secret key without ever sending it

to each other. Using a common number, both sides use a

different random number as a power to raise the common

number. The results are then sent to each other. The

receiving party raises the received number to the same

random power they used before, and the results are the

same on both sides. Elliptic curve cryptography and key

management shown in Fig. 4

Implementation: Some common implementation

considerations include:

Domain parameters: To use ECC, all parties must agree on

all the elements defining the elliptic curve, that is, the

domain parameters of the scheme. The field is defined by

Fig. 4. ECC Diffie-Hellman Key Exchange

p in the prime case and the pair of m and f in the binary

case. The elliptic curve is defined by the constants a and b

used in its defining equation. Finally, the cyclic subgroup

is defined by its generator (base point) G. For

cryptographic application the order of G, that is the

smallest positive number n such that , is

normally prime. Since n is the size of a subgroup of

it follows from Lagrange's theorem that the

number is an integer. In

cryptographic applications this number h, called the

cofactor, must be small () and preferably

. To summarize: in the prime case, the domain parameters

are ; in the binary case, they are

. Unless there is an assurance

that domain parameters were generated by a party trusted

with respect to their use, the domain parameters must be

validated before use.

The generation of domain parameters is not usually done

by each participant because this involves computing the

number of points on a curve which is time-consuming and

troublesome to implement. As a result, several standard

bodies published domain parameters of elliptic curves for

several common field sizes. Such domain parameters are

commonly known as "standard curves" or "named curves";

a named curve can be referenced either by name or by the

unique object identifier defined in the standard documents:

 NIST, Recommended Elliptic Curves for

Government Use

 SECG, SEC 2: Recommended Elliptic Curve

Domain Parameters

 ECC Brainpool (RFC 5639), ECC Brainpool

Standard Curves and Curve Generation

Table 1, from NIST SP800-57 (Recommendation for Key

Management), compares various algorithms by showing

comparable key sizes in terms of computational effort for

cryptanalysis. As can be seen, a considerably smaller key

size can be used for ECC compared to RSA. Furthermore,

for equal key lengths, the computational effort required for

https://en.wikipedia.org/wiki/Plane_curve
https://en.wikipedia.org/wiki/Point_at_infinity
https://en.wikipedia.org/wiki/Elliptic_curve#The_group_law
https://en.wikipedia.org/wiki/Elliptic_curve#The_group_law
https://en.wikipedia.org/wiki/Elliptic_curve#The_group_law
https://en.wikipedia.org/wiki/Abelian_group
https://en.wikipedia.org/wiki/Divisor_%28algebraic_geometry%29
https://en.wikipedia.org/wiki/Algebraic_variety
https://en.wikipedia.org/wiki/Discrete_logarithm
https://en.wikipedia.org/wiki/Elliptic_curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Integrated_Encryption_Scheme
https://en.wikipedia.org/wiki/Elliptic_Curve_DSA
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/EdDSA
https://en.wikipedia.org/wiki/Schnorr_signature
https://en.wikipedia.org/wiki/Twisted_Edwards_curve
https://en.wikipedia.org/wiki/Twisted_Edwards_curve
https://en.wikipedia.org/wiki/Twisted_Edwards_curve
https://en.wikipedia.org/wiki/ECMQV
https://en.wikipedia.org/wiki/Menezes%E2%80%93Qu%E2%80%93Vanstone
https://en.wikipedia.org/wiki/Implicit_certificate
http://encyclopedia2.thefreedictionary.com/elliptic+curve+cryptography
http://encyclopedia2.thefreedictionary.com/key+management
http://encyclopedia2.thefreedictionary.com/key+management
http://encyclopedia2.thefreedictionary.com/key+management
https://en.wikipedia.org/wiki/Order_%28group_theory%29
https://en.wikipedia.org/wiki/Lagrange%27s_theorem_%28group_theory%29
https://en.wikipedia.org/wiki/Counting_points_on_elliptic_curves
https://en.wikipedia.org/wiki/Counting_points_on_elliptic_curves
https://en.wikipedia.org/wiki/Counting_points_on_elliptic_curves
https://en.wikipedia.org/wiki/Object_identifier
https://en.wikipedia.org/wiki/NIST
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
https://en.wikipedia.org/wiki/SECG
http://www.secg.org/sec2-v2.pdf
http://www.secg.org/sec2-v2.pdf
http://www.secg.org/sec2-v2.pdf
https://tools.ietf.org/html/rfc5639
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5702 8

ECC and RSA is comparable. Thus, there is a

computational advantage to using ECC with a shorter key

length than a comparably secure RSA [18].

Table 1 Comparable Key Size in Terms of Computational

Effort for Cryptanalysis (NIST SP-800-57)
Symmetric

Key

 Algorithms

Diffie-Hellman,

Digital Signature

Algorithm

RSA

 (size

 of n in

bits)

ECC

 (modulus

 size in bits)

80 L=1024, N=160 1024 160-223

112 L=2048, N=224 2048 224-255

128 L=3072, N=256 3072 256-383

192 L=7680, N=384 7680 384-511

256 L=15360, N=512 15,360 512+

L = size of public key, N = size of private key

B. Sobol sequence:

 Sobol sequences (also called LPτ sequences or (t, s)

sequences in base 2) are an example of quasi-random low-

discrepancy sequences. These sequences use a base of two

to form successively finer uniform partitions of the unit

interval and then reorder the coordinates in each

dimension. This is because low discrepancy sequences

tend to sample space "more uniformly" than random

numbers. Algorithms that use such sequences may have

superior convergence.

Fig. 5.Pseudorandom sequence VS. Sobol sequence

As shown in Fig. 5, 256 points from a pseudorandom

number compared with the first 256 points from the 2, 3

Sobol sequence. The Sobol sequence covers the space

more evenly. (Red=1... 10, blue=11... 100, green=101...

256) Implementation and availability of Sobol sequences:

Good initialisation numbers for different numbers of

dimensions are provided by several authors. For example,

Sobol provides initialisation numbers for dimensions up to

51. The same set of initialisation numbers is used by

Bratley and Fox. Initialisation numbers for high

dimensions are available on Joe and Kuo. Peter Jäckel

provides initialisation numbers up to dimension 32 in his

book "Monte Carlo methods in finance". Other

implementations are available as C, Fortran 77, or Fortran

90 routines in the Numerical Recipes collection of

software. A free/open-source implementation in up to

1111 dimensions, based on the Joe and Kuo initialisation

numbers, is available in C and Julia. A different free/open-

source implementation is available for C++, Fortran 90,

Matlab, and Python.

All computer-based random-number generation algorithms

are "quasi-random" in that they are limited (ultimately by

the number of bits of the operating system, but generally

by algorithm assumptions) to have a period over which the

random number sequence repeats. Hence no implemented

random number generator is "truly" random. In this article,

we will use Zemax' Sobol Sequence generator.

C. Related Work:

The security of remote storage applications has been

increasingly addressed in the recent years, which has

resulted in various approaches to the design of storage

verification primitives. The literature distinguishes two

main categories of verification schemes [10]:

Deterministic verification schemes check the conservation

of a remote data in a single, although potentially more

expensive operation and probabilistic verification schemes

rely on the random checking of portions of outsourced

data. Wang et al. [14] discussed the problem of ensuring

the availability and integrity of data storage in cloud

computing. They utilized the homomorphic token and

error correcting codes to achieve the integration of storage

correctness insurance and data error localization, but their

scheme does not support an efficient insert operation due

to the index positions of data blocks. Existing schemes are

unable to provide strong security assurance to the users

because all these schemes are verifying integrity of data

using pseudorandom sequence. It does not cover the whole

data while computing integrity proof. Therefore,

probabilistic verification schemes based on pseudorandom

sequence does not give strong guarantee to the users about

security of their data. To overcome this problem, Syam et

al. [9] proposed a homomorpic distributed verification

protocol to ensure data storage security in cloud

computing using Sobol Sequence instead of

pseudorandom sequence, which is more uniform than

pseudorandom sequence. Their scheme achieves the

availability and integrity of outsourced data in cloud but

similar [14], it is also not addressing data confidentiality

issue. To achieve all these security and performance

requirements of cloud storage, we propose an efficient and

secure protocol using ECC, Sobol sequence in section IV.

III. SYSTEM MODEL

Cloud Data Storage Model: The cloud storage model

considering here is consists of three main components as

illustrated in Fig. 6. (1) Cloud User: the user, who can be

an individual or an organization originally storing their

data in cloud and accessing the data. (2) Cloud Service

Provider (CSP): the CSP, who manages cloud servers

(CSs) and provides a paid storage space on its

infrastructure to users as a service. (3) Third Party Auditor

(TPA) or Verifier: the TPA or Verifier, who has expertise

and capabilities that users may not have and verifies the

integrity of outsourced data in cloud on behalf of users.

https://en.wikipedia.org/wiki/Low-discrepancy_sequence
https://en.wikipedia.org/wiki/Low-discrepancy_sequence
https://en.wikipedia.org/wiki/Peter_Jaeckel
https://en.wikipedia.org/wiki/Monte_Carlo_methods_in_finance
https://en.wikipedia.org/wiki/Numerical_Recipes
https://en.wikipedia.org/wiki/Free_and_open-source_software
https://en.wikipedia.org/wiki/Julia_%28programming_language%29
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Fortran_90
https://en.wikipedia.org/wiki/Matlab
https://en.wikipedia.org/wiki/Python_%28programming_language%29

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5702 9

Based on the audit result, the TPA could release an audit

report to user.

Fig.6. Cloud Data Storage Model

In cloud data storage model, the user stores his data in

cloud through cloud service provider and if he wants to

access the data back, sends a request to the CSP and

receives the original data. If data is in encrypted form that

can be decrypted using his secrete key. However, the data

is stored in cloud is vulnerable to malicious attacks; it

would bring irretrievable losses to the users, since their

data is stored at an untrusted storage servers. It doesn’t

matter that whether data is encrypted or not before storing

in cloud and no matter what trust relations the client and

the server may have a priori share. The existing security

mechanisms need to re-evaluate. Thus, it is always

desirable to need an efficient and secure method for users

to verify that whether data is intact? If user does not have

the time, he assigns this task to third party auditor. The

auditor verifies the integrity of data on behalf of users.

 In this paper, we are considering two types of attacks for

cloud data storage those are: Internal Attacks and External

Attacks. Internal Attacks: These are initiated by malicious

Cloud Service Provider (CSP) or malicious users. Those

are intentionally corrupting the user’s data inside the cloud

by modifying or deleting. They are also able obtain all the

information and may leaked it to outsiders. External

Attacks: these are initiated by unauthorized parties from

outside the cloud. The external attacker, who is capable of

comprising cloud servers and can access the user’s data as

long as they are internally consistent i.e. he may delete or

modify the customer’s data and may leaked the user

private information. We have designed an efficient and

secure storage protocol to ensure the following goals.

These goals are classified into two categories: Efficiency

(Low computation overhead and less communication

overhead) and Security Goals (Confidentiality, Integrity).

Notations and Permutations:

 • F - the data file to be stored in cloud, the file F is divide

into n blocks of equal length: m1,m2,…,mn , where

n=[|m|/l] .

 • fkey(.)- Sobol Random Function (SRF) indexed on some

key, which is defined as f: {0, 1}* ×key-{0, 1} log2 n.

 • πkey(.)–Sobol Random Permutation (SRP) which is

defined as π : {0,1}
log2(1)

 ×key– {0,1}
log2(1)

.

 Elliptic Curve Cryptography over ring Zn: Let n be an

integer and let a, b be two integers in Zn such that gcd

(4a
3
+27b

2
, n) =1. An elliptic curve En (a, b) over the ring

Zn is the set of points(x, y) ∈ Zn× Zn satisfying the

equation: y
2
+ax+b, together with the point at infinity

denoted as On.

IV. PROPOSED SCHEME

To ensure the confidentiality and integrity of data stored in

cloud, we propose an Efficient and Secure protocol. Our

scheme is designed under the Elliptic Curve Cryptography

[10, 12] construction and use of Sobol sequence to verify

the integrity of storage data randomly. This protocol

consists of three phases, namely Setup, Verification and

Dynamic Data Operations and Verification. The three

process model is depicted in fig.7. The construction of

these phases is presented briefly as follows: Setup In this

phase, the user pre-processes the file before storing in

cloud. The Setup phase consists of three algorithms, those

are: (1) KeyGen (2) Encryption (3) MetadataGen.

KeyGen:

 In this algorithm, the user generates private key and

public key pair using algorithm 1, it takes k as input and

generates private key and public key pair as output as

follows: the given security parameter k (k>512), user

chooses two large primes p and q of size k such that p≡ q≡

2 (mod 3). Then compute

n=pq (1)

and

Nn= lcm (p+1, q+1). (2)

Where Nn is a order of elliptic curve over the ring Zn

denoted by En (0, b), and b is a randomly chosen integer

such that gcd(b, n)=1 and compute P is a generator of

En(0, b). It outputs public key PK= {b, n, p} and private

key PR= {Nn)}.

Algorithm 1: KeyGen

 1. Procedure: KeyGen(k) ←{ PK,PR}

2. Take security parameter k (k>512)

3. Choose two random primes p and q of size k: p≡q≡

2 (mod 3)

4. Compute n=pq

5. Compute Nn = lcm(p+1, q+1)

6. Generate random integer b<n, gcd (b, n) =1

7. Compute P, is a generator of En(0,b)

 8. Private key PR= { Nn }

9. Public key PK= {n, b, P}

10. end procedure

Encryption: To ensure the confidentiality of data, the user

encrypts the each data block mi in the file F using

algorithm 2, it takes mi keyed Sobol Ranodom Function

(SRF) and secrete random parameter s as inputs and

produce m'i as output as follows:

F = {m1, m2 … mn} = {mi} l ≤ i ≤n (3)

F′= m′i = mi + fk (s) (4)

where s is random of size l.

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5702 10

Algorithm 2: Encryption

1. Procedure: Encryption (mi, s) ←m'i

2. for 1 to n

3. Compute mi' = mi + fk (s)

4. end for

5. end procedure

Meta data Gen: After encrypting the data, the user

computes a metadata over encrypted data to verify the

integrity of data using algorithm 3, which takes m'i, public

key and private key as inputs and produce metadata Ti as

output: Ti ← m'i P(mod Nn)) (5)

where Pε En(0, b)

 Algorithm 3:MetadataGen

 1. Procedure: MetadataGen(m'i ,n, b, P) ←Ti

2. for 1 to n

 3. Compute Ti ← m'i P(mod Nn))

4. end for

5. end procedure

After computation of metadata, the user sends metadata,

public key to the TPA for later verification and sends file

F' to cloud servers for storage. Verification Phase: Once

data has stored in cloud, in order to ensure the integrity of

data, our scheme entirely relies on verification phase. To

verify the integrity of data, the verifier first creates a

challenge and sends to the server. Upon receiving a

challenge from the verifier, the server computes a response

as integrity proof and return to the verifier. It consists of

three algorithms: (1) Challenge (2) Proof Gen (3) Check

Proof. Challenge: The verifier creates a challenge by

running algorithm 4, it takes kSRF, j and Q as input and

return chal as output as follows: the verifier chooses a

random keys kSRF and kSRP using Sobol sequence and

computes random indices 1≤iJ≤n (j= 1,…., c) of the

set[1,n], where c = πk SRP
 (c)

(6)which prevents the server from anticipating which

blocks will be queried in each challenge. The verifier also

generates a fresh random value r to guarantee that the

server does not reuse any values from the previous

challenge and computes Q = rP.

(7) Then, verifier creates the challenge chal = {kSRF, j, Q},

and sends to the server.

Algorithm 4: Challenge

1. Procedure: Challenge(kSRF,j,Q) ← chal

2. Generates a random keys kSRF, kSRP and fresh

random value using Sobol Sequence.

3. Compute c = 𝛑𝐤𝐒𝐑𝐏 (c)

 4. Compute Q=rPε En(0, b)

5. Create challenge chal={ kSRF, j, Q}

6. end procedure

Fig. 7 Efficient and Secure Storage Processing Model.

Proof Gen: Upon receiving a challenge from the verifier,

each server computes a response as integrity proof using

algorithm 5, it takes encrypted data m'i, challenge chal as

inputs and produce response R as output as follows: first,

it generates random numbers using Sobol random

Function (SRF) i.e.

 aj = fk SRF
 (j) (8)

Then compute b = ajmi
′
j

c
j=1 (9)

 where 1 ≤ ij ≤n

Later, computes a response R = bQ mod n (10)

 = ajmi
′
j

c
j=1 Q mod n

 = ajmi
′
j

c
j=1 rP mod n

 = r (ajmi
′
j

c
j=1 P mod n)

Algorithm 5: ProofGen

 1. Procedure: ProofGen(m'i , kSRF, Q)←R

2. Generates a n random numbers using kSRF

 3. for 1 to n

4. Generate a j = 𝐟𝐤𝐒𝐑𝐅 (j)

5. end for

6. compute b = 𝐚𝐣𝐦𝐢
′

𝐣
𝐜
𝐣=𝟏

7. compute R= bQ mod n

8. end procedure

Check Proof: After receiving a response from the server,

the verifier checks the integrity using algorithm 6, it takes

public key pk, challenge query chal, and proof R as inputs

and return output as 1 if the integrity of file is verified as

successfully or 0 as follows: the verifier re-generates

random numbers using Sobol Random function i.e.

 aj = fk SRF (j)

then compute S= ajTi
′
j

c
j=1 mod n (11)

 R′ = r S mod n (12)

 Now, verifier checks whether R'=R, (13)

if response is valid, then it returns 1 otherwise 0.

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5702 11

 Algorithm 6: CheckProof

 1. Procedure: CheckProof(T'i , r, kSRF, n)←R'

 2. Generates a n random numbers using key kSRF

3. for 1 to n

 4. Generate aj = 𝐟𝐤𝐒𝐑𝐅 (j)

5. end for

6. compute S= 𝐚𝐣𝐓𝐢
′

𝐣
𝐜
𝐣=𝟏 mod n

7. compute R' = r S mod n

8. verify if (R'=R)

9. return true

10. else

11. return false

12. end if

13. end procedure

Dynamic Data Operations The proposed scheme also

supports dynamic data operations at block level [15] while

maintaining same security assurance, such as Block

Modification (BM), Block Insertion (BI) and Block

Deletion (BD). These operations are performed by the

server based on the user request in the general form (Block

OP, j, m’i), where Block Op indicates the block operation

such as BM, BI and BD. The parameter j indicates the

particular block to be updated and m*i is the new block. In

order to update data in cloud, the user creates a request

and sends to the server. Upon receiving an update request

from the user, the server performs the particular update

operation (modification/insert/delete). Here, we show that

how our scheme supports dynamic data operations

efficiently:

 Algorithm 7: PrepareUpdate

 1. Procedure:PrepareUpdate←(BM/BI/BD,j, m'i)

 2. Select a update block mj

 3. if (update==modification/insert)

4. Encrypt m'j ←mj + f k (s)

5. Compute Tj ← m'j P mod Nn

6. Update= (BM/BI, j, m'i)

 7. else if(update==deletion)

8. Update = ((BD, j)

 9. Send update request to the server

 10. end if

 11. end procedure

Block Modification (BM): Data modification is one of the

frequently used operations in cloud data storage. Suppose,

the user wants to modify the block mj with m'i, then the

user runs the algorithm 7 to do the following:

 1) Create a new block mj

 2) Encrypt the new block using equation (2)

 m'j← mj + f k (s) (14)

3) Compute new metadata using equation

 Tj ← m'j P mod Nn (15)

4) Create update request (BM, j, mi) and sends to the

server.

5) The Metadata sends to TPA for later verification

Upon receiving an update request, the server replace the

block m'i with m'j and construct update version of the file

F'' by running algorithm 8.

 Algorithm 8: ExecuteUpdate

 1. Procedure: ExecuteUpdate← {F''}

2. if(update==modification)

3. replace mi with m'j in the file F'

 4. update file F''

5. else if(update==insert)

6. insert m*x before mi or append

7. else if(update==deletion)

8. delete mi from file F'

9. update the file F''

10. move all blocks backward after i
th

 block

11. end if

12. end procedure

Block Insertion (BI): In this operation, the user wants to

insert a new block m* after position j in the file F'= {m'1

,…, m'n}. The block insertion operation changes the logical

structure of the file; the proposed scheme can perform the

block insertion operation without re-computing metadata

of all blocks that have been shifted after inserting a block,

because block index is not included in the metadata. To

perform an insertion of a new block m* after position j in

a file, the user runs algorithm 7 to do the following:

1. Create a new block m*j

2. Encrypt the new block

 m'j ← m*j + f k (s) (16)

3. Compute new metadata

 T*j ← m'j P mod Nn (17)

 4. Create update request (BI, j, m'i) and sends to the

server.

 5. The Metadata sends to TPA for later verification

 Upon receiving the update request, the server replace the

block m’j with m'j and construct update version of the file

F'' by run the algorithm 8.

Block Deletion (BD): The Block deletion operation is the

opposite of insertion operation. When one block is deleted,

all subsequent blocks are moved one step forward.

Suppose, the user wants to delete a specific data block at

position j from the file F', creates a delete request (BD, j),

sends to the server and also sends request to the TPA to

delete corresponding block metadata. Upon receiving a

delete request from the user, the server deletes the block

m'j from the file and constructs update version of the file

F''. Similarly, the TPA deletes corresponding metadata.

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5702 12

Here, deletion of metadata do not depends on other block

metadata. The detail of delete operation is given in

algorithm 8.

 Verification: To ensure the security of dynamic data

operations, the user verifies the integrity of updated block

immediately after updating as follows:

(1) The user challenges the server immediately for the

proof of update operation i.e. Q = rP (18)

(2) Upon receiving a request from the user, the server

computes a response for updated block and returns to the

user: Rj← m'j P mod n (19)

(3) After receiving an update response from the server, the

user verifies whether response is matched with metadata

of particular block by running algorithm 9, if it returns

true, server has been updated data successfully otherwise

not.

Algorithm 9: VerifyUpdate

 1. Procedure: VerifyUpdate(pk, Q, R')→{1,0 }

 2. if(update==modification/insert)

 3. if(Tj=Rj)

 4. return 1

 5. else

 6. return 0

 7. end if

 8. else if(update==deletion)

 9. verification directly starts from static case

 10. end if

 11. end procedure

V. PROPOSED SCHEME IMPLEMENTATION

 In this section, we present the Performance analysis,

experimental results and Security analysis of our protocol

as well as Comparison with Existing scheme.

A. Performance Analysis:

 We analyze the performance of our scheme in terms of

storage, communication and computation complexity.

Storage cost: Here, we detail the storage cost required by

the client, TPA and server. User Side: The user needs to

store the only secrete parameter. The storage cost for that

is O (1). Server Side: the server needs to be store the

complete file, the cost for storage file is O (n) bits. TPA or

Verifier: the verifier needs to store metadata and public

key. The metadata is a relatively smaller than original file,

so storage cost for metadata is O (1). Communication

Cost: Here, we consider the communication cost between

the server and verifier during verification phase. The

challenge sent by the verifier to the server, which consists

of O (1) and the response (it is a small size compare to

original file) sent by server to the verifier, which consists

of O (1). Thus, total communication cost is O (1).

Computation Cost: We analyze the computation cost of

the user, verifier and server as follows: User: during the

setup phase, the user generates a private key and public

key whose cost is O (1). Then, to encrypt a file, the user

needs to perform integer addition and its cost is O (n).

Finally, computes the metadata by performing n-bit point

multiplications whose cost is O (1). Hence, total

computation cost of the user is: O (1).

Verifier: During the verification phase, the TPA or verifier

needs to generate three random numbers ⟨kSRF, j, r⟩, then

compute c = πk SRP
(c) and Q = rP, whose cost is O(1).

Again, after receiving the response, the verifier re-

generates {aj} j= [l, c], the computation cost of each aj

mi
′
j
corresponds to the sum of point multiplication of two

bits. Finally, the verifier computes R', the cost of R' is a

two point multiplications plus sum of 2 bit integer plus

generating random numbers cost, which is O(1)

respectively. Hence, the total computation cost at verifier

side is O(1).

Server Side: During the verification phase, the server

needs to generate n-Sobolrandom b-bit integers ai , then it

computes b = ajmi
′
j

c
j=1 and R = r ajmi

′
j

c
j=1 P mod n,

The computation of each ajmi
′
j
 corresponds to the sum of

point multiplication of two bits. The computation cost of

ajmi
′
j
 is O(1). Next, the server computes a proof, which

consists of point multiplications in ProofGen algorithm, its

cost is O(1). The total computation cost of server for

generating integrity proof (response) is O(1). In table 2,

we summarized the storage, communication and

computation costs.

Table 2: Summary of Storage, Communication and

Computation cost of Proposed Protocol
Storage Cost Communication

Cost
Computation
Cost

Verifier Server Verifier Server User Verifier Server

O(1) O(n) O(1) O(1)

O(1)

O(1)

O(1)

B. Experimental Result

 All experiments conducted using C++ on system with

dual core 2-GHZ processor and 4GB RAM running

Windows 2007. In our implementation, we use MIRACL

library version 5.4.2 to achieve better security work on

elliptic curve with 160-bit group order instead of RSA on

1024 bits. Here, we are measuring total time for

computation cost of the verifier and server using ECC and

RSA respectively.

Speedup =
RSA −ECC

RSA
 ∗ 100

 Then, we compare computation cost of our protocol with

RSA-based remote data checking protocols, which

includes the verifier, server and user computation costs

and presented results in table 3,4 & 5.

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5702 13

Table 3: Computation Cost at Verifier using RSA [16] and

ECC based schemes.
File

Size

Verifier side using

RSA[33]

Verifier Side

using ECC

Speedup

10MB 424.37 ms 316.26ms 25%

20MB 482.81ms 342.43ms 29%

30MB 561.62ms 376.03ms 32%

40MB 641.46ms 415.09ms 35%

50MB 743.64ms 465.13ms 38%

Table 3 shows that the total computation cost of verifier

for our proposed scheme is faster than existing RSA based

scheme [15]

Table 4: Computation Cost at Server with RSA based

scheme and ECC scheme
l(bits) Server Side with

RSA[33]

Server Side

with ECC

Speedup

(%)

10MB 388.01 ms 275.11 ms 29%

20MB 447.62 ms 312.43 ms 30%

30MB 508.39 ms 348.21 ms 31%

40MB 562.67 ms 381.21 ms 32%

50MB 625.16 ms 418.76 ms 33%

Table 4 shows that the total computation cost of the server

for proposed scheme is faster than existing RSA based

scheme [15].

Table 5: Metadata Computation Cost at user with RSA and

ECC based schemes
l(bits) Server Side with

RSA[33]

Server Side

with ECC

Speedup

(%)

10MB 244.11 ms 183.06 ms 25%

20MB 296.41 ms 218.32 ms 26%

30MB 352.53 ms 253.38 ms 28%

40MB 403.17 ms 289.63 ms 29%

50MB 467.26 ms 323.92 ms 30%

Table 5 shows that the total computation cost of metadata

at user side in our scheme is faster than existing RSA

based scheme [15]

C. Security Analysis:

In this section, we present the formal security analysis of

the proposed scheme. That means integrity and

confidentiality of data stored in cloud.

In our integrity analysis, we have depended on the Finding

order of elliptic curve and Elliptic curve discrete logarithm

problem denoted by ELDL problems.

 (1) Finding the order of elliptic curves: The order of

elliptic curve over the ring Zn is: let n=pq is defined in

[38,] as Nn = lcm (#Ep(a, b), #Eq(a, b)). Nn is the order of

the curve, i.e. for any Pε En (a, b) and any integer k, such

that (k Nn+1) P=P. (20)

If (a=0 and p≡q≡2 mod 3) or (b=0 and p≡q≡3 mod 4), the

order of En (a, b) is equal to Nn. The given Nn =lcm (#Ep(a,

b), #Eq(a, b)) = lcm(p+1, q+1) (21)

Solving Nn is computationally equitant to factoring the

corresponding number n.

 (2) Elliptic Curve Discrete Logarithm Problem (ECDLP)

Consider the equation Q=rp where Q, Pε En (a, b) and r<n.

it is relatively hard to determine r given Q and P.

Theorem1. The proposed protocol is complete

Proof: Here, we are proving this theorem according to the

definition of sound and commutative property of point

multiplication in an elliptic curve [10].

 We have R' = R

 R′= rS mod n

S = ajTi j
c
j=1 mod n where aj = f k (j)

 = (ajmi
′
j

c
j=1 P mod Nn) mod n

 = ajmi
′
j

c
j=1 P mod n

R' = r S mod n

 = r ((ajmi
′
j

c
j=1 P mod n)

 = r (ajmi
′
j

c
j=1 P mod n)

 = R

From the equation (13), the protocol is complete or valid.

Then the verifier is “probabilistically” assured that server

still holds data safely. In reality, verifier only verifies that

server holds the j [1, c] selective blocks where j is chosen

randomly.

Monte Carlo Results

Monte Carlo methods (or Monte Carlo experiments) are a

broad class of computational algorithms that rely on

repeated random sampling to obtain numerical results.

They are often used in physical and mathematical

problems and are most useful when it is difficult or

impossible to use other mathematical methods. Monte

Carlo methods are mainly used in three distinct problem

classes: optimization, numerical integration, and

generating draws from a probability distribution. Zemax

has the capability to do tolerance in different modes:

sensitivity mode, inverse sensitivity and inverse

increment.

 It can also perform a Monte Carlo simulation. After the

sensitivity analysis or inverse sensitivity analysis is

performed, Zemax will perform a Monte Carlo analysis.

When there are very few rays (10,000) and many many

rays (1 billion) the results of the random ray-trace and

Sobol ray-trace are similar, Hence Sobol sampling is most

useful. The signal to noise ratio (SNR) of the random ray-

trace is SQRT (N) where N is the average number of rays

hitting a pixel. For the Sobol sampling scheme, the SNR

goes linearly as N. This can be seen by taking a cross-

section through the distribution with 1 billion rays per

source:

https://en.wikipedia.org/wiki/Computation
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Random
https://en.wikipedia.org/wiki/Physics
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Optimization
https://en.wikipedia.org/wiki/Numerical_integration
https://en.wikipedia.org/wiki/Probability_distribution

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5702 14

Fig.8. simulation using random numbers

Fig.8 shows that the random sequence gives worst

performance, while Sobol Sequence gives rapid

convergence to the solution. To conclude that it has been

shown that Sobol sequence can evaluate more efficiently

than pseudorandom sequences.

Sobol sampling can make a significant reduction in the

time taken to undertake a Monte Carlo ray-tracing

simulation, and will generally produce faster convergence

than truly random rays. However, in any Monte-Carlo

simulation, there is ultimately no more accurate method

that making many samples with a truly random number

generator. For this reason, Zemax allows you to select

either a Sobol sampling scheme, or to use Zemax's long-

period random number generator, in the source tab of the

object properties.

Confidentiality: Now, we analyze the confidentiality of

our scheme: The stored data in cloud cannot be leaked to a

malicious attacker (servers and TPA).

In this analysis, we depend on the hardness of the Elliptive

Curve Diffie- Hellman (ECHP) and Elliptive Curve

Discrete Logarithm (ECDL) problems.

Theorem 2: The proposed protocol is confidential against

data leakage to attacker. We prove this theorem under

different attacks:

(1) The secret parameter s cannot be derived by a

malicious user eavesdropping on the communication link

between the user and server because of Elliptive Curve

Diffie-Hellman (ECDH) problem. The public parameter

{b,n,P} cannot help the adversary to infer or calculate any

useful information that can reveal the shared key between

the user and server.

(2) Suppose, If the malicious server wants to access the

data from the encrypted file F'=mi'. But it is not possible,

because in order to access the encrypted data, he should

need a secrete parameter, this secrete key chosen by user

randomly. If server tries to get the secret key by using

different combinations of public parameters but fail to do

so due to the ECDL problem. Hence, the server cannot

learn anything from F'.

(3) The TPA has Ti ← m'i P (mod Nn). If he tries to access

data content from metadata, the user computes metadata

over encrypted the data using secrete key. However, it is

not possible because the secrete parameter chosen by the

user from random. So there is no chance to TPA get

secrete parameter using public key and metadata. Hence,

The TPA cannot learn anything from metadata Ti.

Therefore on the basis of ECDH and ECDL problems, our

protocol is confidential against data leakage.

D. Comparison with Existing Schemes

Table 6: Comparisons between Proposed Protocol and

selective Existing Protocols

 Q.wang

[14]

Hao

[17]

Syam[9] Proposed

protocol

Type of Guaranty Prob Deter Prob Prob

Integrity Partial Yes Yes Yes

Confidentiality No Partial No Yes

Public

Verifiability

Yes Yes No Yes

Data Dynamics Yes Yes Partial O(1)

Communication
 complexity

O(logn) O(1) O(1) O(1)

Server

Computation

O(logn) O(n) O(clogn) O(1)

Verifier
computation

O(logn) O(n) O(clogn) O(1)

Probability

Detection

O(N-1/2) O(N-1/2) O(N-1) O(N-1)

Prob: Probabilistic Deter: Deterministic We proposed an

ECC based verification scheme. The principal of ECC

compared to RSA is that it appear to offer equal security

for a far smaller key size, thereby it reduced the

computation overhead. pseudorandom sequence is not

uniform (uncorrelated random numbers), and it will take

more time to detect data corruption, so its time consuming

whereas proposed protocol verifies the integrity of the data

using Sobol sequence. Our scheme should detect all data

corruptions with less number of blocks since sobol

sequence covers the entire data in the file more uniformly

than pseudorandom sequence. Finally, the proposed

protocol is private against unauthorized data leakage

because, we are encrypting the data before storing in

cloud. In Table 6, we summarize the comparison between

the selective existing protocols and proposed protocol.

VI. CONCLUSION

Elliptic curves cryptography (ECC) is one of the public-

key cryptographic algorithms. Though RSA is the most

commonly applicable cryptosystem scheme nowadays for

the web security, ECC may overtake it due to the

proliferation of smaller devices and increasing security

needs. Although, several attempts had been made at

providing a secured environment for activities in the

Cloud, Elliptic Curve Cryptography (ECC) provides

solutions for a secured Cloud environment with improved

performance in computing power and battery resource

usage. This makes it attractive for mobile applications.

ECC provided a robust and secured model for the

development and deployment of secured application in the

Cloud. In this paper, we have studied the problem of

Integrity and Confidentiality of data storage in cloud

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5702 15

computing and proposed an efficient and secure protocol

using ECC and Sobol sequence. The proposed method is

mainly suitable for thin users who have less resources and

limited computing capability. It satisfies the all security

and performance requirements of cloud data storage. Our

method also supports public verifiability that enables TPA

to verify the integrity of data without retrieving original

data from the server and probability detects data

corruptions. Moreover, our scheme also supports dynamic

data operations, which performed by the user on data

stored in cloud while maintaining same security assurance.

We have proved that proposed scheme is secure in terms

of integrity and confidentiality through security analysis.

Through, performance analysis and experimental results

proved that proposed scheme is efficient. Compared with

previously proposed protocols, we have also proved that

proposed scheme is more secure and efficient. The

research may further expanded into the comparison of

ECC with the quantum cryptography (assuming the

experimental tools are easily accessible).

REFERENCES

[1] Amazon.com, “Amazon Web Services (AWS),” Online at

http://aws. amazon.com, 2008.

[2] N. Gohring, “Amazon’s S3 down for several hours” Online at

http://www.pcworld.com/businesscenter/article/142549/amazons s3

down for several hours.html, 2008.

[3] Apple “ICloud” Online at http://www.apple.com/icloud/what-

is.html 2010 .
[4] T Mather, S Kumaraswamy, and S Latif “Cloud Security and

Privacy”, O’REILLY Publication, first edition, sep- 2009.

[5] H. Takabi, J.B.D. Joshi, and G. Ahn, “Security and Privacy
Challenges in Cloud Computing Environments”, Article in IEEE

Security and Privacy, vol. 8, no.6, Nov- Dec. 10, pp. 24-31, 2010.

[6] Y. Deswarte, J.-J. Quisquater, and A. Saidane. “Remote integrity
checking”. In Proc. of Conference on Integrity and Internal Control

in Information Systems (IICIS’03), Nov03, lausanne, Switzerland,

2003.
[7] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik, “Scalable

and Efficient Provable Data Possession,” Proc. of SecureComm

’08, pp. 1–10, Istanbul, Turkey, 2008.
[8] M. A. Shah, M. Baker, J. C. Mogul, and R. Swaminathan,

“Auditing to Keep Online Storage Services Honest,” Proc. 11th

USENIX Workshop on Hot Topics in Operating Systems (HOTOS

’07), pp. 1–6, CA, USA, 2007.

[9] P. Syam Kumar, R. Subramanian, “Homomorpic Distributed

Verification Ptorotocol for Ensuring Data Storage in Cloud
Computing”. International Journal of Information, VOL. 14,

NO.10, OCT-11, pp.3465-3476, 2011.

[10] N. Oualha, M. Onen, Y. Roudier, “A Security Protocol for Self-
Organizing Data Storage”. Tech. Rep. EURECOM+2399, Institut

Eurecom, France, 2008.

[11] V. Miller, “Uses of elliptic curves in cryptography”, advances
in Cryptology, Proceedings of Crypto’85, Lecture Notes in

Computer Science, 218 Springer-Verlag, pp.417-426. 1986.

[12] K. Koyama, U. Maurer, T. Okamoto, and S. Vanstone, “New
Public-Key Schemes Based on Elliptic Curves over the Ring

Zn”, Advances in Cryptology - CRYPTO '91, Lecture Notes
in Computer Science, Springer-Verlag, vol. 576, Aug 91 pp. 252-

266, 1991.

[13] Brately P and Fox B L “Algorithm 659: Implementing Sobol’s
Quasi-random Sequence Generator” ACM Trans. Math. Software

14 (1), pp. 88–100, 1988.

[14] C. Wang, Q. Wang, K. Ren, N. cao and W. Lou , “Towards Secure
and Dependable Storage Services in Cloud Computing”, Accepted

for publication in future issue of IEEE Trans. Service Computing.

DOI:10.1109/TSC.2011.24.

[15] Z. Hao, S. Zhong, and N. Yu, “A Privacy-Preserving Remote Data

Integrity Checking Protocol with Data Dynamics and Public

Verifiability”, Accepted for publication in future issue of IEEE
Trans. Knowledge and Data Engineering, DOI:

10.1109/TKDE.2011.62

[16] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z.
Peterson,and D. Song, “Remote Data Checking using Provable Data

Possession,” ACM Trans. ACM Transactions on Information and

System Security, Vol. 14, No. 1, Article 12, may, pp. 12.1–12.34,
2011.

[17] Z. Hao and N. Yu, “A multiple-replica remote data possession

checking protocol with public verifiability,” in Second International
Symposium on Data, Privacy, and E- Commerce ,.Buffalo, Niagara

Falls, 2010.

[18] William Stallings, Cryptography and Network Security Principles
and Practice Sixth Edition, Pearsons, ISBN10:0-13-335469-5.

BIOGRAPHY

Santosh Kumar Singh is a Research Scholar in the

Department of Computer Applications,

Vinoba Bhave University, Hazaribag,

Jharkhand, India. He received M. Phil

(Computer Science) degree in 2011 and

Master of Philosophy Dissertation

entitled “study on the network security

& network topology”. He Qualified

Doctoral (Ph.D) Eligibility Test 2014 of Vinoba Bhave

University, Hazaribag. His research interests are Cloud

Computing, Parallel and Distributed Computing etc. He is

currently working on Cloud Computing.

http://www.apple.com/icloud/what-%20%20is.html%202010
http://www.apple.com/icloud/what-%20%20is.html%202010

